

Semi-Virtual Disk III Revision C

1 - Introduction

The original idea behind the Semi-Virtual Disk (SVD) was invented by Eric Rothfus back in 2003. As Eric stated on his website:

"The SVD was built for fun, and was built with parts that were easy to come by and easy to use. Total parts cost is around \$60. Schematics, board layout, and all software can be found here, so feel free to build one yourself. What I recommend, though, is that you just buy one here. I don't intend to make any money off of the SVD; whatever profit beyond the cost of parts will be donated to worthy vintage computer sites and concerns."

The SVD is basically a device that allows you to upload disk images to onboard SRAM. These disk images are used to simulate a floppy disk to your retro computer. Disk images are simply copies of a disk stored in files on your modern day computer.

Eric continued to improve and support the SDV project for several years as time permitted from all his other responsibilities. Around 2008 all improvement activity seemed to stop. The last webpage update was on October 2014.

The updated hardware design presented here is my contribution to the project.

All the features of the original SVD-II work in the new SVD-III. This is no surprise since only the hardware was updates. No changes to the firmware were made and hardware testing was done using the last SVD release V2.4.

In addition to optimizing the hardware design, several enhancements were added.

In the original SVD-II board there was an annoying power up reset bug. Sometimes the microprocessor would not reset correctly on power-up. You were required to press the reset button to force a clean reset. In addition, the lower 8-bits of the SRAM address line counter had no provisions to assure it would reset in a zero state. A DS1233 was added to assures that both the microprocessor and 8-bit address line counter would be in a solid reset condition after the power supply became stable.

When drive termination was required, an external 150 ohm resistor pack was placed on a second adapter board that was placed between the SVD-II and the interface cable. A 150 ohm termination SIP resistor pack was added to the main board on the SVD-III. This allows the termination resistor pack to be removed or added as needed.

A connector has been added allowing the use of a standard FTDI module to replace the original RS232 interface. Through the FTDI module; you simply plug the SVD-III in to the standard USB port on your modern computer system, select the correct COM port on the SVD's control software and start uploading disk images. The use of the FTDI means you can set the baud rate to the maximum that the SVD software can handle without issue. An Arduino FTDI module (since I have link 50 of them still in their unopened original anti-static bags) is used. The SVD-III board should work with others versions for Arduino compatible FTDI modules though.

The SRAM has been consolidated in to a signal chip. In addition, the new SRAM chip doubles the disk image memory space. The current version of SVD firmware does not support this larger memory size. It is hope that a future updates might take advantage of this increase capacity. In the meantime a disk

image bank select switch option was added. This bank select switch allows two image banks to be supported.

Testing shows that you can place the SVD-III to use Bank 0 and upload disk images to that location. You then switch to Bank 1 and upload another set of images there. You can then switch between the two Banks. For example you may uploaded HDOS in to Bank 0 and CP/M in to Bank 1. Then you would switch between the two Banks and perform a cold boot on the computer to enter the new operating system environment.

One limitation found using this bank switching is if you upload two disk images into Bank 0 and then upload only a signal disk image in to Bank 1, when you switch back to Bank 0 that should have two disk images it turns out you lose the second image. Looks like the firmware setups an image counter so if you upload only one image, the SVD firmware will not look for a second image.

A battery backup to maintain the SRAM after a power down was also added. Again the current firmware does not use the SRAM after a reset or power cycle until you upload a new disk image. It is hoped that someone will fix the firmware to take advantage of the battery backed up of SRAM since this would be a really nice feature to have.

2 - PC board Parts list

Bill-of-materials (BOM) NOTES:

*These are optional parts used to support a possible future SRAM battery backup function and are not needed for normal operation when using the firmware version 2.4 or earlier. Even though there will be no backup benefit using older versions of firmware, if desired, these parts may be installed with any version firmware and will not causing any issues.

**The 34-pin header I ended up selecting for my need was a right-angle latching version and is the one listed in the following BOM. Depending on your systems configuration or needs, there are two other version you may wish to consider:

- Straight low profile 34-pin gold header TE Connectivity AMP PN 5103308-7 (Digikey A33168-ND)
- Straight latching 34-pin header 3M PN N3431-6202RB (Digik ey MHS34S-ND)

Label	Description	Digikey PN	MFG	MFG PN
B1*	Battery CR2032 3V Lithium	P189-ND	Panasonic	CR2032
B1*	Battery holder type CR2032	36-1066-ND	Keystone	1066
C9,10	Capacitor, ceramic, 0.001uF, 50V, 20%	399-9770-ND	Kemet	C320C102M5R5TA
C6	Capacitor, aluminum 47uF@25V 20%	493-15369-1-ND	Nichicon	UKL1E470KEDANATD
C7	Capacitor tantalum 2.2uF 35V 10%	399-3558-ND	Kemet	T350C225K035AT
C1,C2,C3,C4,C5,C8	Capacitor, ceramic, 0.1uF, 50V, 20%	399-4151-ND	Kemet	C315C104M5U5TA
D1	LED, Green diffuse 5mm round	754-1265-ND	Kingbright	WP7113LGD
D2	LED, yellow diffuse 5mm round	754-1268-ND	Kingbright	WP7113LYD
D3	LED, yellow diffuse 5mm round	754-1268-ND	Kingbright	WP7113LYD
D4	LED, Green diffuse 5mm round	754-1265-ND	Kingbright	WP7113LGD
D5	LED, red diffuse 5mm round	754-1266-ND	Kingbright	WP7113LID

D6	Diode, 1N4001 50V@1A	1N4001GOS-ND	On Semiconductor	1N4001G
D7	Diode Schottky BAT46	497-3768-1-ND	STMicroelectronics	BAT47
D8*	Diode Schottky BAT46	497-3768-1-ND	STMicroelectronics	BAT47
IC1	IC, 16F877 MCU 8BIT 14KB FLASH	PIC16F877-20/P- ND	Microchip	PIC16F877-20/P
IC2	IC, SRAM 512K x 8 55nS	1450-1027-ND	Alliance	AS6C4008-55PCN
IC3	IC, 74LS393	296-1665-5-ND	TI	SN74LS393N
IC4	IC, 74LS06	296-15069-5-ND	TI	SN74LS06N
IC5	IC, 74LS00	296-1626-5-ND	ТІ	SN74LS00N
IC6	IC, 7805 5V@1.5A TO- 220	MC7805CT- BPMS-ND	Micro Commercial	MC7805CT-BP
IC7	OSC, XO 20.000MHz TTL	535-9173-5-ND	Abracon	ACH-20.000MHZ-EK
IC8,IC9	IC, DS1233	DS1233-10+-ND	Maxim	DS1233-10+
IC1	Socket, 40-pin dip	AE10018-ND (Tin) AE10031-ND (Gold)	Assmann	AR 40 HZL-TT AR 40 HZL/01-TT
IC2	Socket, 32-pin dip	AE10030-ND (Gold)	Assmann	AR 32 HZL/01-TT
IC3,IC4, IC5	Socket, 14-pin dip	AE10012-ND (Tin) AE10023-ND (Gold)	Assmann	AR 14 HZL-TT AR 14 HZL/01-TT
IC6	TO-220 heatsink	HS107-ND	Aavid	577202B00000G
IC6	Machine Screw, M3 x 8mm	335-1149-ND	APM	RM3X8mm 2701
IC6	Hex Nut, M3	H762-ND	B&F	MHNZ 003
J1**	34-pin Header	AHB34H-ND	AMP	5499913-8
J2	Header, 2-pin, 0.1 pitch, right angle	A1926-ND	Amp	640457-2
13	Header, 3-pin, 0.1 pitch, right angle	A19480-ND	Amp	640457-3
J4	Socket, 6-pin 0.1 pitch	SAM1089-06-ND	Samtech	SLW-106-01-G-S
JP1,JP2, JP3	Header, 2-pin 0.1 pitch	3M9447-ND	3M	961102-6404-AR
* <i>JP1</i> JP2,JP3	2-pin Jumper	952-2165-ND	Harwin	M7567-46

Q1	Transistor, 2N3906 PNP 40V TO-92	2N3906FS-ND	Fairchild	2N3906BU
R1,R12, R13	Resistor, 10K ohm, 1/8 watt, CF, axial	CF18JT10K0CT- ND	Stackpole	CF18JT10K0
R2,R8,R9,R10,R11	Resistor 1K ohm, 1/8 watt, CF, axial	CF18JT1K00CT- ND	Stackpole	CF18JT1K00
R3,R4,R5,R6,R7	Resistor, 470 ohm, 1/8 watt, CF, axial	CF18JT470RCT- ND	Stackpole	CF18JT470R
RN1	Resistor network SIP 150 ohm	4308R-101- 151LF-ND	Bourns	4308R-101-151LF
RN1	8-Pin SIP socket	A460-ND	Aries	40-0518-10
FTDI	Arduion FTDI module	1050-1021-ND	Arduino	A000059 or A000107
FTDI	Connector Right Angle 6-Pin	3M9471-ND	3M	961106-5604-AR
FTDI (2)	Screw <i>,</i> M2.5 x 12mm Nylon	36-29334-ND	Keystone	29334
FTDI (6)	Nut, Hex M2.5x0.45 Nylon	36-4687-ND	Keystone	4687
РСВ	SVD-III Rev C PC Board	N/A	DTR	SVD-III-Rev C

3 – Assembly Notes

Assembly

Follow the instructions carefully and read the entire step before you perform the operation. Solder a part or group of parts only when you are instructed to do so.

Each circuit part in an electronic kit has its own component number (R2, C4, stc.). Use these numbers when you want to identify that same part in the various sections of the Manual. These numbers, which are especially useful if a part has to be replaced, appear:

- In the Parts List
- At the beginning of each step where a component is installed
- In the schematic

SAFETY WARNING: Safety glasses are recommended. Avoid eye injury when you cut off excess lead lengths. Hold the leads so they cannot fly toward your eyes.

Soldering

Soldering is one of the most important operations you will perform while assembling your kit. A good solder connection will form an electrical connection between two parts, such as a component lead and a circuit board foil. A bad solder connection could prevent an otherwise well-assembled kit from operating properly.

It is easy to make a good solder connection if you follow a few simple rules:

- Use the right type of soldering iron. If available a temperature controlled soldering iron is recommended. Otherwise us a 25 to 40-watt pencil soldering iron. In either case use a 1/8" or 3/16" chisel or pyramid tip for best results.
- 2. Keep the soldering iron tip clean. Wipe it often on a wet sponge or cloth; then apply solder to the tip to give the entire tip a wet look. This process is called tinning, and it will protect the tip and enable you to make good connections. When solder tends to "ball" or does not stick to the tip, the tip needs to be cleaned and retinned.
- 3. A good solder connection is made when you heat the component lead and the foil on the circuit board at the same time. This will allow the solder to flow evenly onto the lead and foil. The solder will then make a good electrical connection between the lead and the foil.

Board Assembly

Refer to the silk screen on the printed circuit board or the board layout in appendix B for parts locations on the board.

Install the thirteen 1/8 watt resistors at the following locations.

- () R1: 10K ohm, 1/8-watt, 5% (brown-black-orange)
- () R2: 1K ohm, 1/8-watt, 5% (brown-black-red)

NOTE: If you plan to use the remote LED display board option shown in appendix E, skip the six steps for R3 through R7.

() R3: 470 ohm, 1/8-watt, 5% (yellow-violet-brown)

Manual Version C.03

- () R4: 470 ohm, 1/8-watt, 5% (yellow-violet-brown)
- () R5: 470 ohm, 1/8-watt, 5% (yellow-violet-brown)
- () R6: 470 ohm, 1/8-watt, 5% (yellow-violet-brown)
- () R7: 470 ohm, 1/8-watt, 5% (yellow-violet-brown)
- () Solder the leads to the foil and cut off the excess lead lengths.
- () R8: 1K ohm, 1/8-watt, 5% (brown-black-red)
- () R9: 1K ohm, 1/8-watt, 5% (brown-black-red)
- () R10: 1K ohm, 1/8-watt, 5% (brown-black-red)
- () R11: 1K ohm, 1/8-watt, 5% (brown-black-red)
- () R12: 10K ohm, 1/8-watt, 5% (brown-black-orange)
- () R13: 10K ohm, 1/8-watt, 5% (brown-black-orange)
- () Solder the leads to the foil and cut off the excess lead lengths.

NOTE: The next three diodes are polarized and need to be installed with the banded end matching the outline on the PC board or on the board layout. The lead on the banded end should be inserted into the square hole on the PC board. Schottky diode D8 is used as part of the optional SRAM battery backup and may be omitted if no backup battery support is used.

- () D6: Black diode labeled 1N4001.
- () D7: Blue colored glass schottky diode labeled BAT46.
- () D8: Optional Blue colored glass schottky diode labeled BAT46.
- () Solder the leads to the foil and cut off the excess lead lengths.

Install the eight ceramic capacitors at the following locations.

- () C1: yellow 0.1uF ceramic labeled 104.
- () C2: yellow 0.1uF ceramic labeled 104.
- () C3: yellow 0.1uF ceramic labeled 104.
- () C4: yellow 0.1uF ceramic labeled 104.
- () C5: yellow 0.1uF ceramic labeled 104.
- () C8: yellow 0.1uF ceramic labeled 104.
- () C9: yellow 0.001uF ceramic labeled 102.
- () C10: yellow 0.001uF ceramic labeled 102.
- () Solder the leads to the foil and cut off the excess lead lengths.

NOTE: 14-pin, 32-pin and 40-pin IC (integrated circuit) sockets are used in this kit. Make sure all pins are straight. Carefully insert the socket pins in to the circuit board holes. Make sure the index notch on the IC socket is on the same end as pin one (a square pad indicates pin 1) of that IC location. All sockets are placed on the component side and soldered on the solder side of the board. Start by soldering only a single pin to the board. Verify that the socket is aligned and tight against the component side of the board. If not carefully reheat the pin and reposition the IC socket as needed. Once the IC socket is correctly placed, solder the remaining pins.

40-pin IC socket at the following location.

() IC1

32-pin IC socket at the following location.

() IC2

14-pin IC sockets at the following locations.

() IC3

() IC4

() IC5

() RN1: Use the same process as the IC sockets above to install the 8-pin serial in-line socket.

CAUTION: The 20MHz oscillator module you will be installing in the next step is a CMOS device that can be damaged by static electricity. Use the following sequence when you install this oscillator integrated circuits.

- 1. Pick up the conductive foam block with the oscillator mounted on it.
- 2. Hold the oscillator in one hand and pull the conductive foam pad from the pins and set the foam pad aside.
- 3. Pick up the circuit board while you hold the oscillator.
- 4. Carefully insert the oscillator in indicated holes. Make sure to install the oscillator in the correct orientation on the board. Carefully bend the leads just enough to hold the oscillator in place before you set the circuit board down in to your work surface for soldering.
- 5. Verify that the oscillator is in the correct orientation and solder the four oscillator leads to the board and trim as needed.

The oscillator is now protected by circuit board's sockets foil.

() IC7: 20MHz oscillator

NOTE: The next two capacitors are polarized and have positive and negative leads. Make sure that the positive lead is inserted into the hold marked + (the square hole) on the board.

() C6: 47uF polarized aluminum electrolytic capacitor.

() C7: 2.2uF polarized tantalum capacitor.

NOTE: If you plan to use the remote LED display board option shown in appendix E, skip the five steps for D1 through D5.

NOTE: Installing the LEDs, position the flat side as shown to match the outline on the board. Note that the short LED lead is in the square hole on the board. Hold the LEDs tight to the board and solder the leads to the foil and cut off the excess lead lengths.

() D1: Green LED.

- () D2: Yellow LED.
- () D3: Yellow LED.
- () D4: Green LED.
- () D5: Red LED.

NOTE: The next two parts installed are the DS1233. These integrated circuits are packaged in a TO -92 style case and look like transistors. Make sure that the parts used at IC8 and IC9 are not a transistor and are labeled DS1233.

CAUTION: If these parts are installed backwards, they will be destroyed on power up. When installing the DS1233, make sure to align the 3-pin package so the flat side of the part matches the outline on the board's silk screen or the board layout in the appendix.

() IC8: Align the DS1233 IC to the silk screen on the board or board layout. Insert each of the 3-pin in to their respective holes and carefully push the part to about 0.1 inches above the board. Bend the leads slightly on the back to hold the part in place.

() IC9: Repeat the process above with the second DS1233.

() Q1: Align the 2N3906 PNP transistor to the silk screen on the board or board layout. Insert each of the 3 pins in to their respective holes and carefully push the part to about 0.1 inches above the board. Bend the leads slightly on the back to hold the part in place.

() Solder the leads to the foil and cut off the excess lead lengths.

() J1: 34-pin header. Make sure to install the 34-pin header so that pin-1 is in the hole with the square pad on the board. Solder only one pin then verify that the header is align and tight to the board and pin-1 is in the correct hole. Then solder the remaining pins.

() J2: 2-pin right angle header. Match the silk screen or board layout and solder.

() J3: 3-pin right angle header. Match the silk screen or board layout and solder.

() J4: 6-pin straight header. Solder only one pin then verify that the header is align and tight to the board. Then solder the remaining pins.

() JP1: Optional 2-pin jumper header. Match the silk screen or board layout and solder.

() JP2: 2-pin jumper header. Match the silk screen or board layout and solder.

() JP3: 2-pin jumper header. Match the silk screen or board layout and solder.

Manual Version C.03

() B1: Optional CR2032 Battery holder. Match the silk screen or board layout and solder.

() IC6: Locate the following four parts used to assemble the 7805 voltage regulator to the board:

- Machine Screw, M3 x 8mm
- Hex Nut, M3
- TO-220 heatsink
- IC, 7805 5V@1.5A TO-220

() The three leads on the 7805 need to be pre-bent before installation. Notice that the leads on the 7805 are wider where they exit the black body of the 7805 and then narrow down. Where the transition from wide to narrow occurs, bend the three leads down towards the metal heat sink side of the 7805 to an angle of 90 degrees. Temporarily set the 7805 aside until required.

() From solder side of the board, insert the M3 x 8mm machine screw through the mounting hole at IC6. On the component side of the board, Place the TO-220 heatsink's mounting hole over the protruding M3 machine screw. Make sure to align the heatsink so that it fits best on the large foil area for IC6.

() Install the 7805 at IC6 so that the three pre-formed leads pass through the correct holes and the mounting hole on the metal heatsink tab passes through the protruding M3 machine screw. Do not solder.

() Secure the heatsink and 7805 regulator to the board using the M3 machine screw with the M3 hex nut. Torque the nut on to the screw just enough to secure the parts. Do not over tighten.

() Verify the correct placement and alignment of the 7805 assembly and, solder the leads to the foil and cut off the excess lead lengths.

4 – Testing

Before we install the ICs, FTDI module or battery; we will perform a few basic powerup tests.

() Carefully check for any solder bridges between pins and foil pads. If a solder bridge has occurred, hold the circuit board solder side down and hold the soldering iron tip between the two points that are bridged. The solder will flow down the soldering iron tip.

() Verify that all parts are in their correct locations.

() Set an ohm meter to read the lowest resistance setting and measure across the two pins on J2. If the resistance reading in close to zero then some form of electrical short exists. Carefully inspect the board assembly for solder bridges or parts installed backwards or at incorrect locations. Correct and issues found and re perform this test.

() Reverse the meter leads on J2 and reread the resistance. Like before, if the reading is close to zero then some form of electrical short exists. Carefully inspect the board assembly for solder bridges or parts installed backwards or at incorrect locations. Correct and issues found and re perform this test.

() We will be using a bench or other 8-16 volt DC power supply. Make sure the power supply is off. Connect the positive lead from the power supply to pin 1 on J2 (the pin with the square pad) and the negative lead to pin 2 on J2.

() Set a voltmeter to read a positive 5 volts on the DC range. Connect the positive lead of the voltmeter to pin 14 on IC3 and the negative lead to pin 7 on IC3.

() Turn on the power supply and note the reading on the voltmeter. You should be reading a positive DC voltage between 4.9 and 5.1 volts. The green power LED should be on. Turn off the power supply.

() If you plan on using the battery backup option, install the CR2032 battery at location B1 and insert the two pin jumper on to JP1.

() Set a voltmeter to read a positive 5 volts on the DC range. Measure the voltage reading between the positive pin 32 on IC2 and the negative pin 16 on IC2. You should have a reading between 2 and 3.5 volts DC while the main DC power is turned off.

() Set a voltmeter to read a positive 5 volt on the DC range. Measure the voltage reading between the positive pin-32 on IC2 and the negative pin-16 on IC2. Turn on the power supply. The Green power LED D1 should light and the voltage read should now be between 4 and 5 volts DC.

() Turn off the power supply and if installed disconnect the power connect at J2 and remove the CR2032 battery at B1.

5 – Final assembly

() J4: Locate the following parts used to assemble the FTDI module to the board:

- Quantity 2 Screw, M2.5 x 12mm Nylon
- Quantity 6 Nut, Hex M2.5x0.45 Nylon
- Header Right Angle 6-Pin
- Arduino (or other compatible) FTDI module

() From the solder side of the board, insert a M2.5 x 12mm Nylon screw through the right hand mounting hole within the FTDI module area of the board just below J4. From the component side, use <u>two</u> M2.5 x 0.45mm Nylon nuts to secure the M2.5 x 12mm screw. The two Nylon nuts should create a board-to-board spacer between the SVD-III and soon to be installed FTDI boards.

() Using a similar method as in the previous step, insert a M2.5 x 12mm Nylon screw through the left hand mounting hole within the FTDI module area of the board just below J4. From the component side, use two M2.5 x 0.45mm Nylon nuts to secure the M2.5 x 12mm screw.

WARNING: In the next steps you will be using a 6-pin right-angle header to connect the FTDI module to the 6-pin connector at J4. If you are planning on powering your SVD-III through the USB power on your PC, it is not recommended to connect the two pin power connect at J2 at another power source. This could provide a path to back feed supply voltage from the SVD-III through the FTDI module back in to your PC's USB port.

() If you plan on using the PC to power the SVD-III, through the USB connector, you will need to install a shorting jumper at JP3. If you plan on using the on-board voltage regulator to power your SVD-III, make sure JP3 is open.

() Plug the right angle 6-pin header in to the 6-pin connector of the FTDI module. Using the two mounting holes of the FTDI module, align the holes to pass over the two M2.5 x 12mm screws. Press the FTDI module down so that the open end of the six pin header plugs in to the 6-pin connector at J4.

() Verify the correct position and alignment of the FTDI module over the two screws and that the 6-pin header is engaged in to both the connector at J4 and the connector on the FTDI module. Now use the remaining two M2.5x45 Nylon nuts to secure the FTDI module to the SVD-III board assembly.

NOTE: In the following steps, install ICs (integrated circuits) in the designated sockets. Be careful to match the pin 1 end of each integrated circuits to the index mark on the socket.

Before you apply downward pressure to an integrated circuit, make sure each integrated circuits pin is centered in its proper socket hole. Handle integrated circuits with care, as their pins bend very easily.

CAUTION: The integrated circuits that you will install are CMOS or MOS devices that can be damaged by static electricity. Use the following sequence when you install the integrated circuits.

- 1. Pick up the conductive foam block with the desired integrated circuits mounted on it.
- 2. Hold the IC in one hand and pull the conductive foam pad from the pins.
- 3. Pick up the circuit board while you hold the integrated circuits.
- 4. Carefully insert the IC in its socket before you set the circuit board down in to your work surface.

The IC is now protected by circuit board's sockets and foil.

- () IC1: PIC16F877 8-bit MCU
- () IC2: AS6C4008 512K x 8 SRAM
- () IC3: 74LS393 Binary counter
- () IC4: 74LS06 Hex open collector inverters
- () IC5: 74LS00 Quad NAND gates

This completes the assembly of the SVD-III board.

6 – Operating the SVD-III

As coved previously, the SVD was originally created by Eric Rothfus back in 2003. The current SVD-III version was only a hardware update and still uses both Eric's firmware and software tools to operate. Even though there has been no update for several years now, the original SVD website is still in operation at:

http://www.thesvd.com/

It is from this site that you will need to download and install the control software that provides the modern computer system the interface needed to push disk images in to the SVD.

Connecting the SVD-III to your support computer

One of the hardware improvements on the SVD-III is the addition of FTDI module that replaces the RS232 serial interface on the original SVD.

If you are planning on powering your SVD-III through the USB power from your PC, it is not recommended to connect the 2-pin power connector at J2 to another power source. Doing so could provide a power path to back feed supply voltage from the SVD-III through the FTDI module back in to your PC's USB port.

To power your SVD via USB, you will need to install a shorting jumper at JP3 otherwise make sure it is removed.

Once you have made your power selection above, plug the appropriate USB cable that supports both your FTDI module's USB connector and the one on your PC.

The SVD control program was designed to support hardware serial ports like COM1 and COM2. When a FTDI module is used, two additional steps need to be performed. First the correct software driver needs to be installed on your PC to supports your selected FTDI module. Then once the FTDI is connected via the USB cable to your PC, a COM port should be assigned by your PC. Normally these additional COM ports are above COM1 and COM2. Also, other external devices may also be assigning COM ports to support their needs.

You will need to find which COM port was assigned to the FTDI module you are using. That port needs to be selected in the SVD control program by setting the RS232 Device option located in the **File**...menu selection.

Connecting the SVD to your retro computer

All you need for connecting the SVD to your retro computer system, like an H8, is the 34-conductor ribbon cable that will connect to your H8 on one end and the SVD-III on the other.

For example, if you have an H17 floppy drive there should be a cable already connected to it. Depending on your cable's drive end connector, you may need to use a 34-pin edge-card connector or add an appropriate 34-pin header to the cable to add a connector suitable for connecting to the SVD-III.

NOTE: It is extremely important to ensure that you have pin-1 oriented correctly relative to the SVD-III and the floppy controller.

Drive number configuration

If you are using a H17, the drives within it are probably configured as drives 0 and 1. You can still use the SVD-III in this case, but note that you can only use it as drive 2.

I moved the DIP switches within the H17 cabinet to make the two drives 1 and 2, allowing me to use the SVD-III as drive 0. Although you can boot from any drive you like, some software is programmed to run only from drive 0. Fortunately, most of the time this isn't an issue because upon booting an OS such as HDOS 2.0, whatever the boot drive, it is assigned SYO:, making software work well.

Heathkit's drive select weirdness

The floppy controllers for the Heathkit line has one weird feature. The drive select lines are backwards relative to all of the other machines of the same vintage. This really is not an issue, just something you need to know. The "standard" floppy interface of most of the vintage computers supported 3 or 4 floppy drives. Nearly all of the machines using the interface used the same signal lines for the same floppy drive. All but the H8/H89.

The effect of this weirdness is that the all SVD signal lights are backwards from what you would normally expect. When the H8 is accessing drive 0 an SVD will indicate that it is accessing drive 2. When an H8 is accessing drive 2, an SVD will indicate that it is accessing drive 0. See the following table:

SVD LED Selected	Heathkit Drive selected
DR0 and DR1	Drive 0
DR1	Drive 1
DR0	Drive 2

NOTE: The SVD Control Program software has an option that maps the virtual drive to the right H8 floppy number. This option is normally set, though you can turn it off if you like.

The effect of the option is that when you download drive 2 to the SVD, it will cross-over to drive 0 taking into account the signal weirdness. This does NOT affect the indicator lights which will still be backward.

Using the 150-ohm terminator at RN1

The SVD-III provides a 150-ohm termination resistor pack socket labeled RN1. This termination resister pack is used to pull high the floppy disk control signals connected parallel to each drive (or drive look -a-like in the case of the SVD) in your vintage system. Normally the last drive element in the chain will have this terminator. So, if the SVD is the only "drive" or the last drive in the chain, you will need to install the 150-ohm terminator.

Remember that there should only be ONE termination resister pack in a chain of drives.

7 – Mounting the SDV-III

There are many options to house your SVD-III. From the beginning the plan for the SVD-III was to configure the resulting board to conform to a standard 3.5-inch floppy drive form factor. The width and the four mounting holes on the board match a standard 3.5-inch floppy drive. This allows the SVD to be installed inside of most any floppy drive enclosures.

In this section, I will outline the process I used to installing my SVD-III in to the Heathkit H77 Floppy Disk System I use with my H8 computer system.

The H77 drive enclosure was designed to support two full size 5.25-inch floppy disk drives. This required the SVD-III to be adapted to fit one of the 5.25-inch drive mounting locations. To accomplish a half height, 3.5-inch drive/device bracket for 5.25-inch drive bay with a black bezel. The following two links are examples of the units I selected:

http://www.microcenter.com/product/440433/35 Drive-Device Bracket For 525 Drive Bay, Black

http://www.microcenter.com/product/243843/Bracket for installing 35 drives into 525 bays -Black Bezel

The SVD-III board was mounted to the adapter bracket using four 2.5mm x 12.5mm screws, four 2.5mm washers and four 2.5mm nuts.

With the SVD now secured to the bracket, it became apparent there was a needed for some form of remote board assembly that would extend the LEDs, reset button and bank select switch for easy availability on the front on the drive bracket assembly. Once the board was designed and built, it was mounted on to an aluminum infill panel where there where mating matching the ones need to support the remote board. In addition a square hole was cut to support the USB plug coming form the SVD's FTDI mondule. The finished panel was secured to the front drive bezel using two black Phillips screws.

The following two pictures show the resulting SVD assembly that is installed in to the H77 drive system.

SVD-III with Remote Board installed in 3.5-inch to 5.25-inch bracket

Front panel detail

8 - Circuit description

When reviewing the following circuit description, please refer to the schmatic located in Appendix A.

The heart of the SVD-III is the Microchip PIC16F877 MCU labeled IC1 on the board. The firmware programmed within the PIC16F877 performs two key operations. First it creates the RS232 serial port used to upload or download disk images to/from SVD-III's SRAM.

Next the it listens to the floppy control signals from your old computer and generates the appropriate "floppy-looking" signals back. The in essence convinces your old computer that it is talking to a real floppy drive unit.

Disk images are stored in IC2, a 512K x 8 bit static RAM. The 512K bytes RAM is split into two 256K Banks. Bank selection is handled by changing the high/low state of the A18 address line on IC2. A DS1233 (IC9), a 0.001uF capacitor (C10) and a 10K resistor (R13) are used to create the switch debounce used by the incoming control signal on pin 2 of connector J3. When pin 2 on J3 is pulled low, address line A18 on the SRAM is also low selecting Bank 0. When pin 2 on J3 is opened, the DS1233 will continue to hold the input to A18 active low state for approximately 350ms to assure there is no switch bounce.

The lower 8-bits of the SRAM are driven by IC3, a 74LS393 setup as an 8-bit counter. The PIC simply pulses the memory increment line to increment the lower 8-bits of the SRAM address. The upper address bits are directly separated by the PIC16F877.

The SRAM maybe protected with an optional battery backup. Two schottky diodes are used to combine the board's +5 volt DC supply source D7 and a +3V DC battery source supplied by a CR2032 at B1. The positive supply from the battery passes through shorting jumper JP1 allowing the battery supply to be disabled when not needed.

Power-on and RESET button debouncing is supplied by IC8, the second DS1233 on the board. This DS1233 monitors the power supply voltage and will pull and hold the PIC18F877's MCLR (pin 1) low until a safe operational voltage is restored. Like the other DS1233 it also acts as a debounce circuit for RESET switch input on pin 1 of J3. C19 is a 0.001uF capacitor and R12 is a 10K resistor. These parts helps the DS1233 setup proper de-bounce timing when the RESET signal is released. Pulling pin 1 of J3 to ground will place the SVD-III in to a RESET mode.

The output of IC8 is also passed to the input of on the first open collector inverter in IC4, a 74LS06. Since the 74LS06's outputs are all open collector, the 1K ohm resistor at R2 is needed to pull the output high when the inverter input is low. The resulting RESET signal is connected to 74LS393 8-bit counter at IC3's clear(CLR) input. This will clear IC3's counter to a know zero state after a power cycle or RESET operation.

On board five volt power regulation is provided by is simple an alog voltage regulator circuit made up of a 1N4004 diode D6, a 47uF electrolytic capacitor C6, a 7805 voltage regulator IC6 and a tantalum capacitor C7. Power is presented via connector J2. The positive side of J2 pin 1, is passed through the diode D6. This 1N4001 helps prevent accidental reversals on the power supply input voltage. In normal operation the 1N4001 is forward biased allowing current to flow through. If the voltage becomes reversed, the diode will be reverse biased blocking current flowing in to the regulator circuit. Capacitor C5 provided some DC input voltage ripple stabilization. The 7805 at U6 is used to regulate input voltages between 8 and 16 volts DC down to a regulated 5 volts DC. The 7805 is mounted to an appropriate heat

Manual Version C.03

sink so when input voltages are at greater than 12 volts DC the 7805 will run within the safe operational temperatures. U6 is used to stabilize the final regulated output voltage of the U5.

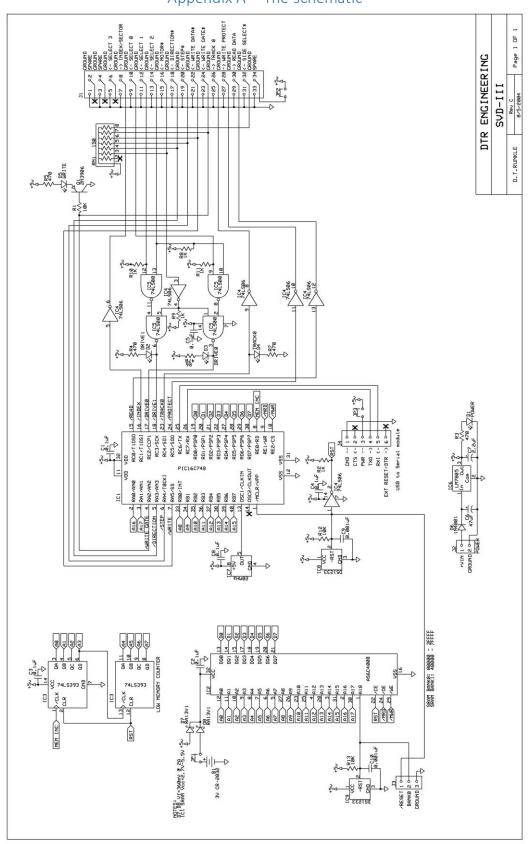
Six 0.1uF capacitors (C1, C2, C3, C4, C5 and C8) are used to help decuple IC generated power line noise on the 5 volt supply.

The floppy drive interface is through the 34-pin connector J1.

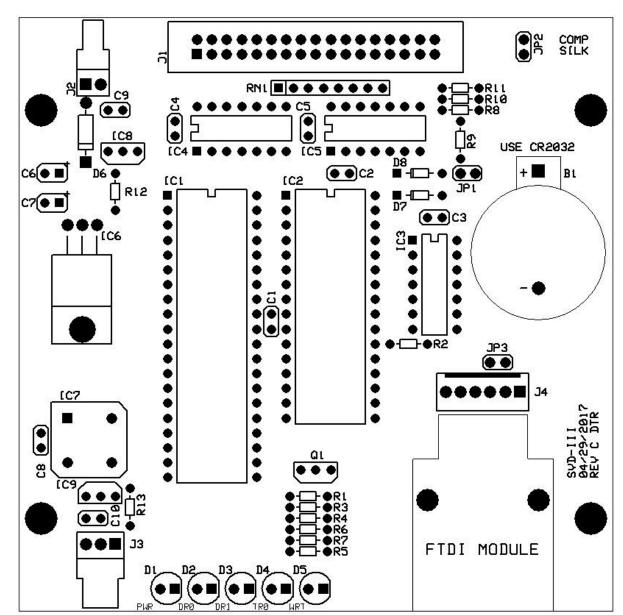
Drive selection is via pins 10, 12 and 14 for drive selects 0, 1 and 2. The MOTOR select Signal is inverted using one inverter channel in IC4 a 74LS06. Since the 74LS06 uses open collector outputs, the 1K resistor at R9 is used to pull the output high when the input to the inverter is low. The inverted MOTOR enable along with the three drive section signals are decoded by the 74LS00 NAND gate at IC5.

The outputs from the 74LS00 drive decoding are passed to both the PIC16F877 and two monitoring LEDs. LED D2 along with 470 ohm resistor R4 monitor the Drive 1 results while LED D3 and 470 ohm resistor R6 monitor the Drive 0 results.

The resulting drive select signaling passed to the PIC16F877 along with the monitoring LED status are shown in the next table.


MOTOR Enable	Drive Selected	Drive 0 - pin 17	Drive 1 - pin 18	Drive 0 LED	Drive 1 LED
Low	0	Low	High	On	Off
Low	1	High	Low	Off	On
Low	2	Low	Low	On	On
High	Don't care	High	High	Off	Off

The four outputs INDEX/SECTOR, TRACK 0, WRITE PROTECT and READ DATA are sent from the SVD-III to the computer. Each of these outputs are passed through the four remaining open collector inverters found in the 74LS06 at IC4. The four output Signals are normally in the low or false state placing their respected inverters outputs in a high impedance or open state.

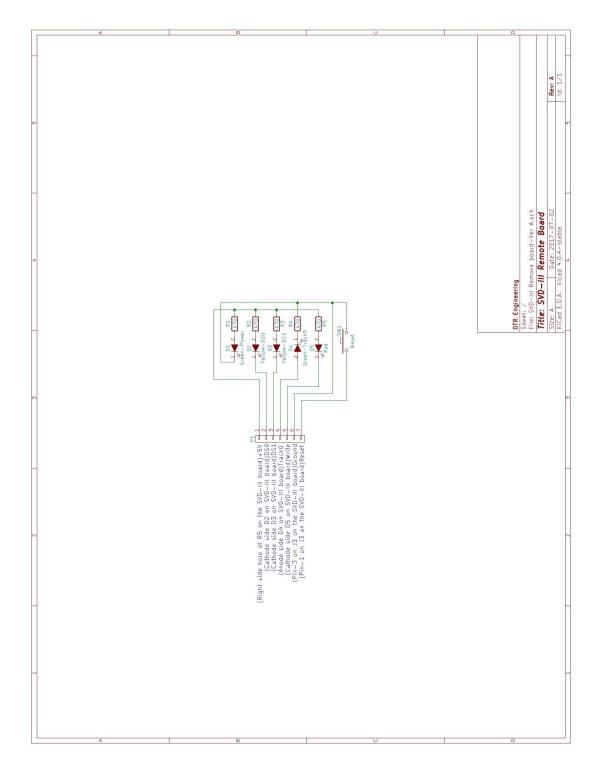

RN1 is a 150 ohm by seven SIP resistor package used as a terminator for the last drive in the floppy drive chain. RN1 is use to pull-up the input Signals MOTOR ENABLE, DIRECTION, STEP, WRITE DATA, WRITE GATE and SIDE SELECT. RN1 is setup with a SIP socket on the PC board allowing the terminator to be installed or removed as needed.

LED D4 and 470 ohm resistor R7 are setup to monitor the status of the TRACK 0 output signal.

10K ohm resistor R1, 2N3906 PNP transistor, LED D5 and 470-ohm resistor are used to provide monitoring of the WRITE GATE input signal. When the WRITE GATE is low, current flows from the base of PNP transistor Q1 turning the transistor on. This allows current to flow through the 470-ohm current limiting resistor R5 in to LED D5 lighting the LED.

Appendix B – Board layout

Appendix C – Pinouts


Pin	Description		
1	Ground		
2	Not connected		
3	Ground		
4	Not connected		
5	Ground		
6	Not connected		
7	Not connected Ground		
8	Index / Sector		
9	Ground		
10	Select 0		
11	Ground		
12	Select 1		
13	Ground		
14	Select 2		
15	Ground		
16	Moter		
17	Ground		
18	Direction		
19	Ground		
20	Step		
21	Ground		
22	Write Data		
23	Ground		
24	Write Gate		
25	Ground		
26	Track 0		
27	Ground		
28	Write Protect		
29	Ground		
30	Read Data		
31	Ground		
32	Side Select		
33	Ground		
34	+5VDC when JP2 is installed		

J1 – 34-pin Disk Drive Header

J2 – 2-Pin Power Connector			
Pin	Description		
1	+8 through 24 volts DC in		
2	Ground		
JE	3 – 3-Pin Mode Connector		
Pin	Description		
1	RESET		
2	SRAM Bank Select		
3	Ground		
J	14 – 6-Pin FTDI Connector		
Pin	Description		
1	Ground		
2	Not connected		
3	+5VDC power		
4	ТХО		
5	RXI		
6	Not connected		

Appendix D – On board jumpers

JP1	Jumper used to enable the SRAM's optional backup battery.
JP2	Jumper used to enable +5 volts DC power on pin-34 of 34-pin connector J1. Once enabled, pin-
	34 can then be used to power other external devices located on the floppy drive bus.
JP3	Jumper used to enable powering the SVD-III using the USB power supplied by the supporting
	PC. Note: If this jumper is installed, you should not connect any external power supply to 2-pin
	power connector J2.

Appendix E – SVD-III Remote board